I. Maxwellgleichungen und Elektrodynamik
Diese Gleichungen von Maxwell 1856 aufgestellt, vereinigen wichtige Gebiete der Physik, etwa die Wärmelehre (Thermodynamik → Strahlung), die Optik und die Elektrodynamik (elektrische und magnetische Felder in Bewegung). Maxwell traf einige Voraussagen bezüglich elektromagnetischer Wellen und deren Ausbreitungsgeschwindigkeit.
III. Relativitätstheorie
1905 formuliert ein bis dahin völlig unbekannter Patentamtsbeamter in der Schweiz eine Theorie „zur Elektrodynamik bewegter Körper“. Die physikalischen Auswirkungen sind für die Alltagsanschaung „dramatisch“. Allerdings, so formuliert es der 26-jährige Albert Einstein, nur nahe der Lichtgeschwindigkeit c.
1.) |
Was ist eine elektromagnetische Welle? Woraus konnte Maxwell diese Erscheinung deuten? Machen Sie eine Skizze. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antwort: |
Maxwell stellte folgende vier Gleichungen auf: Er folgerte aus dem ersten Feldgesetz: Während sich ein Magnetfeld ändert, ist es von ringförmigen (Das bedeutet das „Rot“ in der Gleichung) elektrischen Feldlinien umgeben. Er folgerte aus dem zweiten Feldgesetz: Während sich ein elektrisches Feld ändert, ist es von ringförmigen geschlossenen magnetischen Feldlinien umgeben. Somit also: Veränderliche elektrische Felder erzeugen magnetische Wirbelfelder und veränderliche Magnetfelder erzeugen elektrische Wirbelfelder. Es ergibt sich also eine Kette von Veränderungen des elektrischen und magnetischen Feldes, die sich als selbstständiges Gebilde im Raum ausbreitet. Ladungen erzeugen elektrische Felder, Ströme erzeugen magnetische Felder: Das erste Feldgesetz erweitert diesen Zusammenhang mit Hilfe des zweiten Feldgesetzes nun zu einer beliebig langen Kette: Elektromagnetische Wellen sind stets Transversalwellen. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2.) |
Wie groß ist die Ausbreitungsgeschwindigkeit elektromagnetischer Wellen? Wie berechnete Maxwell diese? |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antwort: |
Aus den Maxwellschen Gleichungen folgt, dass beschleunigte elektrische Ladungen Wellen im elektrischen und magnetischen Feld hervorrufen. Diese elektromagnetischen Wellen lösen sich von der Ladung los und wandern mit der Geschwindigkeit durch den Raum. Die aus der elektrischen und der magnetischen Feldkonstante berechnete Ausbreitungsgeschwindigkeit stimmt mit der Lichtgeschwindigkeit überein. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3.) |
Geben Sie einen Zusammenhang verschiedener elektromagnetischer Wellen an. Erklären Sie damit den Begriff „elektromagnetisches Spektrum“. Welcher Zusammenhang besteht zwischen Wellenlänge, Energie und Frequenz? Machen Sie eine geeignete Skizze und kennzeichnen Sie die wichtigsten Gebiete. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antwort: |
Elektromagnetische Wellen treten in Form von Radiowellen, Mikrowellen, Infrarotstrahlung, Licht, Röntgenstrahlung oder auch Gammastrahlung auf. Die verschiedenen Arten elektromagnetischer Strahlung unterscheiden sich dabei nur durch ihre Frequenz bzw. ihre Wellenlänge, die über miteinander zusammenhängen
(wobei gilt:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4.) |
Wie erzeugte man die ersten nachweisbaren elektromagnetischen Wellen? Besprechen Sie anhand einer Skizze den Versuch und erläutern Sie die wichtigsten Teile. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antwort: |
Der Schwingkreis als Ladungsschaukel:
Angenommen, der Kondensator werde geladen und dann werde der Kreis sich selbst überlassen, so entlädt sich der Kondensator allmählich und das elektrische Feld im Kondensator sinkt. Es geht dabei aber nicht verloren, sondern findet sich nun im Magnetfeld der Spule wieder. Ist die Ladung des Kondensators auf Null gesunken, so erreicht der Strom ein Maximum. Der Strom fließt nun eine Zeitlang in der gleichen Richtung weiter, wobei das zusammenbrechende Magnetfeld eine Induktionsspannung erzeugt, die den Kondensator nun in umgekehrter Weise auflädt. Danach entlädt sich der erneut aufgeladene Kondensator in umgekehrter Richtung, usw. Natürlich kommt die Schwingung recht bald zur Ruhe, wegen der Reibung der Leitungselektronen. Um ein Abklingen zu verhindern, muss der Schwingkreis jedes Mal erneut von außen aufgeladen werden und zwar gerade zur rechten Zeit, also etwa in Resonanz mit dem Schwingkreis. Dies erreicht man durch Einbau einer Triode:
Sie erlaubt es, starke Ströme mit geringem Leistungsaufwand zu steuern. Die negative Gitterspannung von nur einigen Volt, stößt die Elektronen ab. Sie werden zur Kathode zurückgedrängt. Durch Veränderung der Gitterspannung kann man also den Anodenstrom steuern. Grundsätzlich ist eine Triode eine Vakuumröhre, in der eine geheizte Kathode und eine kalte Anode gegenüberstehen. Die Kathode sendet infolge ihrer hohen Temperatur Elektronen aus. Legt man den positiven Pol einer Stromquelle an die Anode und den negativen Pol an die Kathode, so fließt ein elektrischer Strom, weil die Elektronen von der Anode angezogen werden. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5.) |
Was sind Röntgenstrahlen und wie erzeugt man diese? Machen Sie eine geeignete Skizze. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antwort: |
|
1.) |
Was führte zum Versagen der klassischen Physik? Welcher Versuch wurde von wem durchgeführt? Beschreiben Sie dabei auch die Äthertheorie. |
||||||
Antwort: |
Michelson konstruierte um 1880 ein solches Interferometer und ermittelte mit ihm die Wellenlänge einer bestimmten Spektrallinie des Edelgases Krypton. In den 70er Jahren unseres Jahrhunderts wurde die SI-Einheit Meter als ein bestimmtes Vielfaches dieser Wellenlänge definiert. Mit dem Michelson-Interferometer kann man beispielsweise auch die Brechzahl der Luft messen, die etwa 1,0003 beträgt, also sehr nahe bei 1 liegt. Michelson benutzte sein Interferometer im Jahre 1887 auch gemeinsam mit Edward W. Morley für das berühmte Experiment zur Überprüfung der Ätherhypothese. Bei der Behandlung von Wellenerscheinungen haben wir gesehen, dass alle mechanischen Wellen ein Medium benötigen, um sich ausbreiten zu können, und dass die Geschwindigkeit der Wellenbewegung ausschließlich durch die Eigenschaften des Mediums - Gas, Flüssigkeit oder Festkörper - bestimmt wird. (So hängt beispielsweise die Schallgeschwindigkeit in Luft von der Temperatur der Luft ab.) Darüber hinaus ist es bei mechanischen Wellen erlaubt, das jeweilige Medium relativ zur Wellenbewegung als ruhend anzusehen. Wie sind die Verhältnisse bei Lichtwellen? Aufgrund der zahlreichen Untersuchungen, die seit Newton und Huygens zu optischen Interferenz-, Beugungs- und Polarisationsphänomenen gemacht worden waren, gelangte man Anfang des 19. Jahrhunderts zu der Überzeugung, Licht sei endgültig nicht als Teilchen-, sondern als Wellenerscheinung zu deuten. Wenn dem so war, dann lag es auf der Hand, dass Lichtwellen (allgemein: elektromagnetische Wellen) sich ebenfalls in einem Medium ausbreiten sollten. Diesem Medium gab man den Namen Äther. Der Äther sollte den ganzen Weltraum erfüllen und aus einem materiellen Stoff mit sehr ungewöhnlichen Eigenschaften bestehen. Seine Dichte beispielsweise müsste so klein sein, dass mechanische Körper bei ihrer Bewegung durch ihn keine Reibung erfahren. (Als Beweis für die praktisch vernachlässigbare Dichte des Äthers wurde die Bewegung der Planeten um die Sonne gesehen, die vollkommen ohne Reibung abläuft und ausschließlich durch das Newtonsche Gravitationsgesetz beschrieben werden kann.) Neben einer geringen Dichte schrieb man dem Äther noch eine extrem große Starrheit zu, um damit zum einen die hohe Ausbreitungsgeschwindigkeit des Lichts erklären zu können und zum anderen der Tatsache Rechnung zu tragen, dass Lichtwellen reine Transversalwellen sind. Eine weitere wichtige Grundlage des Äthermodells war, dass der Äther als ruhendes System angesehen wurde, auf das sich die Bewegungen sämtlicher Körper und Erscheinungen beziehen lassen sollten. Der Äther als absolutes Bezugssystem. Wenn sie stimmen sollte, so hätten sich daraus drastische Konsequenzen für die gesamte Physik ergeben. Daher war man an experimentellen Nachweisen dieser Hypothese besonders interessiert. Nach der Maxwellschen Theorie des Elektromagnetismus ist die Ausbreitungsgeschwindigkeit von Licht und anderen elektromagnetischen Wellen im Vakuum durch gegeben. Die Maxwellschen Gleichungen liefern keine Aussage, in welchem Bezugssystem die Lichtgeschwindigkeit diesen Wert annimmt; man erwartete jedoch, dass c die Lichtgeschwindigkeit bezogen auf den Äther ist. Eine Messung der Lichtgeschwindigkeit in einem Bezugssystem wie der Erde, das sich relativ zum Äther bewegt, müsste daher ein größeres oder kleineres Ergebnis als c liefern, je nach Richtung der Bewegung relativ zum Lichtstrahl. Voraussetzung war das sogenannte Newtonsche Relativitätsprinzip: a) Raum und Zeit sind absolut b) Alle relativ zu einem Inertialsystem gleichförmig bewegten Bezugssysteme sind ebenfalls Inertialsysteme und im Rahmen der Newtonschen Mechanik gleichwertig. |
||||||
2.) |
Welche zwei Postulate formulierte Einstein als Voraussetzung seiner speziellen Relativitätstheorie? Geben Sie dabei auch eine Erklärung für den Begriff „Inertialsystem“ an. |
||||||
Antwort: |
Ein Bezugssystem (manchmal auch Beobachtersystem genannt) ist, allgemein formuliert, ein System von materiellen Körpern und Mechanismen, beispielsweise Maßstäben und Uhren, mit deren Hilfe die Lage (d. h. die Koordinaten) anderer Körper zu einem bestimmten Zeitpunkt relativ zu den Maßstäben angegeben werden kann. Die Newtonsche Mechanik geht generell davon aus, dass Raum und Zeit absolut, räumliche Abstände und zeitliche Differenzen also unabhängig vom Bezugssystem sind. Im Bezugssystem eines Beobachters R1 bleibt ein ruhender Massenpunkt, auf den keine äußeren Kräfte wirken, nach dem ersten Newtonschen Axiom in Ruhe. Im Bezugssystem eines zweiten Beobachters R2, der sich relativ zum ersten mit konstanter Geschwindigkeit bewegt, hat der kräftefreie Massenpunkt eine konstante Geschwindigkeit - in Übereinstimmung mit dem ersten Newtonschen Axiom. Bewegt sich R2 allerdings nicht mit konstanter Geschwindigkeit relativ zu R1, sondern beschleunigt er, so wird der Beobachter R2 eine Beschleunigung des Massenpunktes sehen, obwohl keine äußeren Kräfte auf ihn einwirken. Das erste Newtonsche Axiom gilt in einem solchen Bezugssystem offensichtlich nicht. Bezugssysteme, in denen das erste Newtonsche Axiom gültig ist, heißen Inertialsysteme. Da das erste Newtonsche Axiom in keiner Weise zwischen einem ruhenden und einem sich gleichförmig bewegenden Massenpunkt unterscheidet, sind alle Bezugssysteme, die sich relativ zu einem Inertialsystem mit konstanter Geschwindigkeit bewegen, ebenfalls Inertialsysteme. |
||||||
3.) |
Welche für das Funktionieren der klassischen Physik notwendigen Begriffe mussten nunmehr aufgegeben werden? Nennen Sie die entsprechenden Formeln für die Koordinatentransformationen, Längenänderungen, Zeitänderungen, Geschwindigkeitsaddition und Massenänderung. Gehen Sie näher auf den Faktor „γ“ ein. Beschreiben Sie in Worten die mathematischen Konsequenzen. |
||||||
Antwort: |
Aufgegeben werden muss ein Teil des Newtonschen Relativitätsprinzips, nämlich die Absolutheit von Zeit und Raum. Insbesondere aber muss die implizite Forderung nach der Absolutheit der Masse ebenfalls aufgegeben werden.
Daraus folgt, mit dem Faktor
Aber auch die „bewegte“ Masse
muss berücksichtigt werden. Aus dem Impulssatz leitet sich folgender Zusammenhang
ab: Der Faktor |
||||||
4.) |
Wie erklärt man sich das Auftreffen von µ-Teilchen auf dem Erdboden, die in etwa 9000m Seehöhe in der Atmosphäre durch die Einwirkung des Sonnenwindes entstehen, wenn ein ruhendes µ-Teilchen eine Halbwertszeit von nur 2 Mikrosekunden besitzt? Die gemessene Geschwindigkeit dieser Teilchen beträgt etwa 0,998c der Lichtgeschwindigkeit. Welche Zeit misst der ruhende Beobachter für das µ-Teilchen bis zum Zerfall? Und welche Strecke legt das µ-Teilchen in seinem Bezugssystem zurück? |
||||||
Antwort: |
Ein µ-Teilchen würde mit
dieser Geschwindigkeit nur etwa 600m zurücklegen. Die im Bezugssystem
Erde gemessene Lebensdauer erhöht sich aber um den Faktor Aus der Sicht der µ-Teilchen beträgt die Lebensdauer weiterhin 2µs, jedoch wegen der Längenkontraktion verkürzt sich die vom Teilchen „gemessene“ Strecke auf etwa 600m, was wiederum den Erwartungen entspricht. |
||||||
5.) |
Berechnen Sie die Ausbreitungsgeschwindigkeit eines
Geschosses, welches innerhalb eines mit halber Lichtgeschwindigkeit bewegten
Raumschiffes abgefeuert wird, für einen außerhalb der Rakete ruhenden
Beobachter. Im Raumschiff betrage die Geschossgeschwindigkeit ebenfalls
|
||||||
Antwort: |
Nach der Newtonschen Theorie
würde man als Gesamtgeschwindigkeit natürlich c erwarten, mit der
oben angeführten Formel kommt man aber auf den Wert |
||||||
6.) |
Wie erklärt Einstein die Ablenkung des Lichtes in der Umgebung großer Massen? Beschreiben Sie die Grundidee der allgemeinen Relativitätstheorie. Erläutern Sie den Versuch, der zur Bestätigung Einsteins durchgeführt wurde. Machen Sie eine Skizze. |
||||||
Antwort: |
Einsteins Verallgemeinerung der Relativitätstheorie auf Nicht-Inertialsysteme ist in der mathematischen Formulierung viel komplizierter als die speziell Relativitätstheorie und es gibt deutlich weniger Möglichkeiten, sie zu überprüfen. Die Grundlage bildet das Äquivalenzprinzip: Ein homogenes Gravitationsfeld ist zu einem gleichmäßig beschleunigten Bezugssystem völlig äquivalent. Betrachtet man einen Lichtstrahl, der in ein beschleunigtes Raumgebiet eintritt (siehe Skizze) so wird ein im System befindlicher Beobachter die Ereignisse wie in Bild b) betrachten und deuten können. Der Lichtstrahl durchläuft eine beschleunigte, gekrümmte Bahn! Einstein behauptete, dass dieser Effekt im Gravitationsfeld der Sonne messbar sein würde. 1919 gelang der Nachweis im Zuge einer Sonnenfinsternis (siehe Skizze unten).
Man kann also sagen, der Raum sei in Umgebung großer Massen, wie etwa der Sonne, gekrümmt. Daraus aber folgt auch, dass das Universum als Ganzes eine Krümmung aufweist, die wesentlich über den Fortgang der Ereignisse bestimmt. Möglich sind sowohl ein offenes (also unendliches Universum) als auch ein geschlossenes (ein Universum, das wieder zu einem neuen „Urknall“ zurückkehrt). |
||||||
7.) |
Erklären Sie die Perihelbewegung des Merkur. Machen Sie eine geeignete Skizze. |
||||||
Antwort: |
|